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A classification of all point groups allows us to derive general character tables. 
The crystal quantum number  description of eigenfunctions IJM} is related to 
the symmetry properties, and general relationships between them are given. 

Key words: Crystal field theory - -  Crystal quantum numbers - -  Point group 
representations 

1. Introduction 

Most of the works using crystal field theory provide eigenfunctions in term of 
crystal quantum numbers ~ as defined by Wybourne [1]. Nevertheless, it is 
sometimes useful to know the irreducible representations of  the crystal field 
Hamiltonian point group to which the eigenfunctions belong. Moreover, in the 
absence of an external magnetic field, this latter description of the eigenfunctions 
leads to maximum decomposition into subsets, whereas the former provides a 
reducible set. Several partial tables of the irreducible representations already 
exist (e.g. [1, 2]) but these are only for a few point groups; our purpose is to 
derive a general method for obtaining this information. The reader not familiar 
with point group theory is referred to Cotton's  book [3]. 

2. Definitions and notation 

Throughout the text, we will use the following notations: 
- n is the order of  the principal (z) axis. 
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- m is an index for the m-th irreducible representation (i.r.) of  the group. 
- k and k '  are integers. 
- C~ is the a - th  power of  the operation Cn (rotation of 2~-/n about the principal 
axis); a = 1 , . . . ,  n. 
- fl takes the values 1 , . . . , ( n - 1 ) / 2  for odd n and 1 , . . . ,  ( n / 2 ) - I  for even n. 
- IJM) is an eigenfunction of  the system (or a part  eigenfunction in intermediate 
coupling); for each J value, there are ( 2 J +  1) such eigenfunctions. 
- /x is a crystal quantum number.  It is solution of the equation (see [1]) 

M =  kn+ lx (1) 

This is in fact the formula "d iv idend=  quo t i en t -d iv i so r+remainde r"  for the 
division M / n  appearing for example in exp (i2~o~M/n) (see Eq. 3). /z is thus 
the remainder  upon division of  M by n and each M value is related to only one 
tz value which depends on n. 

- X,,,(C'~) is the character associated to the operation C~ in the m-th i.r.; an 
asterisk denotes complex conjugation. 
- N is the number  of  electrons in the system whose eigenfunctions are IJM). 
- e is equal to exp (i2r 
- R is the real part  of  a complex number. 

3 .  A c l a s s i f i c a t i o n  o f  t h e  p o i n t  g r o u p s  

Following Prather [4], we can construct a table (Table 1) showing the connections 
between the different point groups. The generic names of the seven families 
appearing for even n values and of the five families appearing for odd n values 
are: 

a) C, This is the cyclic group of order n with operations C~. 

b) C, x I Holohedric group of order 2n with operations C~ and C'~I = IC'~ 
where I is the inversion operator  which commutes with C~. 

c) (Cn x I )  Hemihedric group of  order n with operations C~ (a  even) and C'~I 
(a  odd); these groups only exist for even n values. 

Table 1. Classification of point groups 

(C,, x I )  C, ,x l  C~ {C,,C~} {C,,C'2}xI ({C,,C~}xI),~ ({C,,C~}xI) b 
(n) (2n) (n) (2n) (4n) (2n) (2n) 

Clh C2h C 2 D 2 Dzh Cz,, D~h 
$6 C3 D3 Dad C3v 

$4 C4h C4 D4 D4h C4o D2a 
$1o C5 D5 D5d C5v 

C3h Crh (]6 D6 D6h C6v D3h 
S14 C7 D7 Dvd C7v 

$8 Csh C8 198 D8h C8,~ D4a 

e~ 

O 

Clh is sometimes called C~ 
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d) {C~C'2} Dihedral group of order 2n with operations C~ and ~ " C .  C2, the 
operation C~ which corresponds to a twofold axis perpendicular to the n-fold 
one does not commute with the other operations. 

e) {C.C~} x I Holohedric group of order 4n comprising all operations of {C.C'2} 
and the same operations multiplied by the inversion. 

f) ({CnC~} x I)a Hemihedric group of order 2n; the set of operations is a restric- 
tion of {C~C~} x I where the operations of {C~C'2} not appearing in C~ and those 
of C, x I not appearing in Cn have been suppressed. 

g) ({CnC~} x I)b Hemihedric group of order 2n; the operations are C~ (a  even)+ 
operations of {C,,C'2} resulting from C~ (a  even)+ operations of C, • I resulting 
from C~ (a  odd) + operations of {C,C~}• resulting from C~ (a  odd); these 
groups only exist for even values of n. 

4. Relationships between crystal quantum numbers and irreducible 
representations of the crystal field Hamiltonian point group 

It is necessary to derive the correspondence for even N only because when N 
is odd, K_ramers' theorem (see [4, 5]) tells us that, in the absence of an external 
magnetic field, all the levels are at least doublets. The maximum decomposition 
is thus already achieved by the crystal quantum number description of eigenfunc- 
tions, these numbers being/z = •  + 1)/2 for a system with an odd number of 
electrons. In what follows, we will thus assume that N is even. 

We first show that the separation of the complete set of eigenfunctions into 
subsets characterized by different/z values corresponds to the symmetry decrease 
O3~ Cn; we thus take into account restrictions given by the presence of the 
principal axis only. 

As Cn is abelian, each operation C~ forms a class by itself and the i.rs are of 
dimension one. The character associated with C~ in the m-th i.r. is: 

X,,(C~) = exp (i2~-otm/n) (2) 

From the definition (1) of ~, we get 

C~IJM) = exp (i2~raM/n)lJM ) = exp (i27ra (tx + kn)/n)]JM) 

= exp (i27roqx/n)lJM ). (3) 

We see from (2) and (3) that each ~ value corresponds to a different i.r. of  C, 
and thus, classifying M values following ~ is equal to decomposing the set of 
( 2 J+  1) functions IJM) for one J value into subsets transforming like an i.r. of  
C,. As 

X,_,.(C'~)=exp(i21ra(n-m)/n)=exp(-i2rreem/n) = X,~(C,)* 

we see that the i.rs. of  (7, are conjugated in pairs. It is, however, usually possible 
to consider these two unidimensional representations as a bidimensional one, 
this being no longer exact when the perturbation having the studied symmetry 
is an external magnetic field. As this is precisely the interaction that removes the 
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Table  2. C h a r a c t e r  table for  C .  (n even)  

W. B e e c k m a n  an d  J. Goffar t  

C, C~, C2, ... C~/2-2 C~/~-~ C2/~ C2/2+~ C~/2+2 ... C~ -z C2 -~ C", 

I X = 0  +1 +1 . . .  +1 +1 +1 +1 +1 . . .  +1 +1 +1 A 

e 0 f e  2 0  . . .  - - e  * 2 0  - - 6  */3 (-1)/3 - - 6  0 v - e  2 0  . . .  E .2 /3  e * / 3  + 1  Ix = +/3 

I x = - / 3  e * ~  . 2 / 3 ~  - e  20 - e  0 ( - 1 )  0 - e  . 0  - e  .20 . . .  e 20 e 0 -~1 E~ 

tx = n / 2  - 1  +1 . . .  ( - 1 )  "/2-2 ( - 1 )  "/2-1 ( - 1 )  "/2 ( - 1 )  "/2+~ ( - 1 ) " / 2 + z . . .  + I  - 1  +1 B 

degeneracy  o f / z  values,  /z = +/3, we see that  this degeneracy  is related to t ime 
reversal  symmetry .  

We now construct  the charac te r  tables for  the different g roup  families and  search 
for  the connect ions  b e t w e e n / x  and the i.rs. For  all families,  when n is even, /z 
values are 0 , •  ( f l = l , . . . , ( n / 2 ) - l )  and when n is odd,  / x = 0 , + / 3  
(/3 = 1 , . . . ,  ( n - 1 ) / 2 ) .  

a) C. 

(i) / z = O  always cor respond  to the total ly symmetr ic  i.r. o f  C,  since, 
exp (i2~raO/n) = +1 whatever  a m a y  be. 

(ii) x , ( C ~  -~) = x* (C~)  since, exp (i20r(n - a ) ~ / n )  = exp ( - i2r  

(iii) x ~ ( C , " , = E ) = + I  for  a l l / z  and n. 

(iv) When  n is even , / z  = (n /2 )  cor responds  to an i.r. with +1 or - 1  depending  
on whether  ot is even or odd. 

/z  ot (v) When  n is even, X~,(C~/2+~)=(-1) x ~ ( C , ) .  It is thus possible  to s tudy 
only ha l f  o f  the symmet ry  opera t ions  C ~ , , . . . ,  C'~/2 instead of  the total set 
C l n ,  C ~ / 2  C n �9 . . ,  ~ . .  .~ rl. 

(vi) When  n is even, we get f rom (ii) and (v) the fol lowing result: 
(-1)%,~(c"./2+~) :x,~(c.* "-~). 
With all those  proper t ies ,  we are now able to construct  general  charac ter  tables 
for  C, ,  when  n is even (Table  2) or  odd  (Table  3). Mul l iken 's  nota t ion  for  i.rs 
is indicated on the right o f  the tables (last column).  

b) C, x I  

When n is even, C n •  and when n is odd,  C , •  (Schoenflies '  
nota t ion) .  In the charac te r  table,  the i.r. cor responding  to tz = (n /2 )  only  exists 
for  even n values. 

Table 3. C h a r a c t e r  table for  C.  (n odd)  

C n Gin C~  C 3 . , .  C n 3 cnn--2 c n - 1  Cnn 

t z = O  +1 +1 +1 . . .  +1 +1 +1 +1 A 

IX = +/3 ~e  ~ e 20 e 3/3 . . .  e .3~  e .2~ e . ~  +1 E/3 

IX = - /3  [ .e . 0  e .20 e .30 . . .  e 30 e 20 e/3 +1 
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On the right of the tables (Table 4 and following), we have indicated what 
conditions are required for an eigenfunction [JM) to be a basis function of the 
facing irreducible representation. The conditions noted here are easily found by 
studying the transformation properties of [JM) under inversion. As IIJM}= 
( -1)JIJM),  we see that [JM) transforms in an even way when J is even and in 
an odd way when J is odd. 

Important remark. These conditions hold for monoelectronic [JM) functions where 
J represents a single orbital angular momentum. When dealing with polyelectronic 
functions, J being either the total or the total orbital angular momentum (usually 
denoted as J and L respectively), the parity under inversion no longer depends 

�9 �9 N . 

on J but on the sum of all monoelectromc orbital angular momenta ~i=~ li. This 
is also true for {CnC'2} x I groups�9 

c) (co x I) 

These groups only exist when n is even. If  (n/2)  is even, ((7. x I ) =  S. and if 
(n/2)  is odd, (C. x I ) =  C./2h. There is an isomorphism between these groups 
and Cn, so the conclusions found for the latter also apply to (C. x I). The 
decomposition of the total set of eigenfunctions into subsets following ~ values 
is, as for C., the maximum decomposition (in absence of an external magnetic 
field). 

d) {C.C~} 

In Schoenflies' notation, these are the D.  groups. 

A. n odd 

(i) C~ and C~ -~ belong to the same class because of the presence of the 
perpendicular binary axes C~ (o~ = 1, 2 , . . . ,  (n - 1)/2). We get ( n -  1)/2 such 
classes�9 

(ii) E forms a class by itself�9 

(iii) The n C~ belong to the same class because it is possible to obtain one from 
another through the C~ operations�9 

We thus have a total of ( n + 3 ) / 2  classes and irreducible representations. The 
complex conjugated representations of C, collapse into bidimensional ones whose 
characters are the sums of the characters of the two components�9 

Table 4. Character table for Cn x I 

Cn X I C~ C'~ I 

tz = 0 Ag 
tz = +13 +Table for C. +Table for C. Eog 

/x = 0 A~ 
tx = • +Table for C. -Tab le  for C., E~u 
Ix=n~2 B~ 

even J values a 

odd J values a 

a See remark in Sect. 4b 
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Because of  the introduction of binary axes, we must  find new basis functions for 
spanning the i.rs of  these groups, since, C~IJM)=(-1)J+MIJ-M). C~ does 
preserve the functions: 

I IJM) = ~ (l J -  M ) +  (-1)M[JM)) 

(4) 
U J M ) - =  ~2 (I J -  M)-(-1)M]jM)) 

corresponding to the tesseral harmonics of  first and second kind respectively. 
With these new functions we get 

If  one of the functions transforms in a symmetrical way under C~, the other one 
will transform antisymmetrically. 

We now search for the transformation properties of these new functions under 
all other operations C~, S~ , / ,  O'h, o'v and C~, O'd for even n values. 

(tJM~+~ (cos(27raM/n) -isin(2~raM/n)~(lJM)+~ 
C~ \IJM)-/= \ - i  sin (2~raM/n) cos (27raM~n) /\IJM)-/" (5) 

The conditions for the functions to transform in an independent manner is 
sin (2~raM/n)=0, i.e. 2aM= kn. This is in fact the condition for M to be 
associated with an unidimensional i.r. (~ = 0 for odd n values and /x = 0 and 
tx = n/2 for even n values). 

I(]JM)+~ =(_I)J (10 0~(IJM)+~ 
\IJM)- / 1,] \IJM}-,I 

(IJM)+~ = ( _ l ) J + ~  (10 ~)('JM)+~ 
O'h \[JM)-] \11M>-/ 

( [ JM)+]  O)(IJM)+~ 
[jM)-]=(-1)M(I 0 ~rv -1/\IJM)-/ 

[IJM)+\ _ . j + ~ /  cos (2zraM/n) -i  sin (2~aM/n)'~[lJM)+'~ 
S~ I' " l\[jM)_/= ( -1 )  ~ - i  sin (2~aM/n) cos (27raM/n) ~ t/\[jM)_/ 

C" [IJM)+\ = ~ 1. j / cos (2traM~n) -i  sin (2~aM/n)~ (IJM}+] 
2~,lJm)-,] " -  ) ~ is in  (2~ram/n) - cos  (2rr~m/n)/\IJM)-/ 
(]JM)+~ . .M [ cos (2traM~n) -i  sin (2r 

O'd \IJM)-/= (-l) ~i sin (2~'c~M/n) - cos  (2~o~M/n) /\IJM)-/" 

The transformation properties of I J0) are those of IJM) + with M = 0. The character 
table for {C~C~} with n odd is presented in Table 5. 

The i.r. /x = 0 of C, gives rise to two i.rs. for {C,C~}, one for which the basis 
function does not change sign under C~ and one for which it does. We have 
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Table 5. Character table for {CnC~} (n odd) 
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{C.C~} E 2C~ 2C~ 2C~ "-1~/2 nC'2 

/z=0 +1 +1 +1 

/~ =0 +1 +1 +1 

/z=+f l  +2 2R(e ~) 2R(s2t3) . 

~ J  even: IJM) +] 
+1 +1 A 1 [J  odd: [JM)-~2aM 

~J even: IJM>- / 
+1 -1 a2 [J odd: [JM)+J 
2R(e (('-1)/2)t3) 0 El3 

= kn 

writ ten on the right of  the table the condit ions for-a given funct ion to be a basis 
funct ion of  the facing i.r. For  b id imensional  i.rs I.~ = +fl, IJM) + and [JM)- together  
are basis functions.  For  example ,  in D 3 symmetry ,  the funct ions 100) +, 120) +, 133)-, 
[43) +, 153)-, 163) +, 166) + . . . .  w i t h / z  = 0, will span  the i.r. A1. 

B. n even 

(i) C~ and C~, -~ be long  to the same class ( a  = 1 , 2 , . . . , ( n / 2 ) - 1 ) .  We get 
(n /2 )  - 1 such classes. 

(ii) E forms  a class by  itself. 

(iii) C'~/2= C2 forms a class b,y itself. 

(iv) We have  two classes o f  binary axes C~ and C~ each containing n/2 
operat ions.  

We thus have a total  o f  ( n / 2 ) + 3  classes and  irreducible representat ions.  The 
two supp lemen ta ry  condi t ions  on the extreme right o f  Table 6 are given by the 
t rans format ion  proper t ies  of  ]JM) + and ]JM)- under  C~ opera t ions  (Eq. (5)). 
The  matr ix  is d iagonal  if  2aM = kn which is the condi t ion for  IJM) + or IJM)- 
to be  a basis  funct ion for  a unid imensional  i.r. I f  this condi t ion is fulfilled, 
cos (2zraM/n) = +1 or - 1  respectively for  k even or odd;  the funct ion will span  
one of  the t w o / x  = 0 i.rs in the first case and one of  the t w o / z  = n/2 i.rs in the 
second case. 

e) {C.C~}x I 

When n is even, these groups  are Dnh and when  n is odd,  these are D,d in 
Schoenflies '  notat ion.  

The  character  table has the same form as the table for  Cm x I. The irreducible 
r ep resen ta t ions /z  = n/2 only exist for  even n values. 

f) ({C,C~}x I)a  

In  Schoenflies '  notat ion,  these are the C,~ groups.  

There is an i somorph i sm between these groups  and {C,C~} so the conclusions 
are identical.  

g) ({C,C~} x I)b 

These groups  only exist when  n is even. 

I f  n/2 is even, ({C,C~} x I)b = D,/2a and if n/2 is odd,  ({C,C~}x I)b = D,,/2h. 
These are also i somorph ic  with {CnC'2} so the same conclusions apply.  However ,  



T
ab

le
 6

. 
C

h
ar

ac
te

r 
ta

b
le

 f
or

 {
C

.C
~}

 (n
 e

ve
n)

 

{C
,,C

2}
 

E
 

2C
~ 

2
C

 2
 

..
. 

2C
~/

2-
2 

2C
'~

/2
-'

 
C

2 
n/

2C
~

 
n/

2C
'~

 

=
0

 
+1

 
+1

 
+1

 

=
0

 
+

1 
+1

 
+1

 

=
 n

/2
 

+1
 

-1
 

+1
 

=
 n

/2
 

+1
 

-1
 

+1
 

~
=

• 

�9
 

+
1

 
+

1
 

+1
 

+1
 

+1
 

+1
 

+
1 

-1
 

(-
1)

 "
/~

-2
 

(-
1)

 "
/2

-'
 

(-
1)

 "
/2

 
+1

 

(-
1

) 
"/

2-
2 

(-
1

) 
"/

2-
1 

(-
1

) 
"/

2 
-1

 

+
2 

2R
(e

 .~
) 

2R
(e

 2
t3

) 
..

 
-2

R
(e

 2
~)

 
-2

R
(e

 t3
) 

2
(-

1
) 

t3
 

0 

+1
 

-1
 

-1
 

+
1 

0 

~ J 
ev

en
: 

IJ
M

) +
 ] 

A
I 

[.
/o

d
d

: 
IJ

M
) 

 Se
ve

n:
lm

> /
 

A
2 

[J
 o

dd
: 

IJ
M

)+
J 

I1e
ven

: 
B

a 
[J

 o
dd

: 
IJ

M
) 

[ 

~"
 J 

ev
en

: 
IJ

M
)-

 I
 

B
2 

I g
 o

dd
: 

IJM
)+

J 
E

~ 

M
=

2
k'

(n
/2

) 

M
 =

 (2
k'

+
 1

)(
n/

2)
 

.e.
., .,..
, 

o 



Relationship between quantum numbers and representations of point groups 

Table 7. Character table for {C~C'2} x I 
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{c.c;} 
x I {c.c~} {c.c'~}t 

t.t, = 0 A lg  IJM)+[ 
M 2k'(n/2) i 

= 0 A2g [JM)-J 

/~ = • +Table for {C.C~} +Table for {C.C'2} Eog 

n / 2  Big '"IJM)+{ M = (2k '+ 1)(n/2) 
/z 

tz = n/2 B2g I JM)-J  

tz = 0 A~. IJM)-~ M = 2k'(n/2) 
/~ = 0  A2, ~ I JM)+J  

g = +/3 +Table for {C,,C~} -Table  for {CnC~} E~. 

I.~ = n/2 B1, ~ IJM)-~ 
Ix = n/2 B2u I jM)+j  M = (2k '+ 1)(n/2) 

even J values  a 

odd J values a 

a See remark in Sect. 4b 

there is a slight difference in the correspondence with Mulliken's notations when 
n/2 is odd, i.e. for Dn/2h groups. 

A1 is replaced by A~, A2 by A~, B1 by A~', B 2 by A~ and E~ by E (~'). 

h) High symmetries 

We will consider these groups as special cases of  lower symmetry ones. The lower 
symmetry crystal field Hamiltonian will contain additional information about the 
actual symmetry through the conditions on the Bq k imposed by the high symmetry. 

These are, for example, for the cubic group Oh: 
B 2 = 0 ~ 4 _ . F ~ 4  B 6 7 6 

�9 " 4 -  ~ 14"-'o = - x / ~ B o  

when Oh is viewed as a special case of  D 4 

n 2 = 0 B 4 = - 4 ~ B  4 t/6 - -  2 x / ~  ItS6 1~6 - -  2 ~  i: /6 
at '13- 24 LIO L " 6 -  24 "u0 

when Oh is viewed as a special case of C3v 

B 2 = 0 S 2 = 0 8 4 = - x / ~ S  t n I = - ? 4 x / 7 - 0 n t  n 6 = @ n  6 

when Oh is viewed as a special case of C2~. 

The resulting energies will appear  degenerate and with the help of  correlation 
tables, it will be rather easy to assign all the eigenfunctions to the right i.r. of  
the high symmetry point group. In the difficult case where some accidental 
degeneracy remains, a detailed study of the degenerate set of  levels must be 
performed to avoid mistakes. 
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